On the algebraic structure of Weihrauch degrees
نویسندگان
چکیده
We introduce two new operations (compositional products and implication) on Weihrauch degrees, and investigate the overall algebraic structure. The validity of the various distributivity laws is studied and forms the basis for a comparison with similar structures such as residuated lattices and concurrent Kleene algebras. Introducing the notion of an ideal with respect to the compositional product, we can consider suitable quotients of the Weihrauch degrees. We also prove some specific characterizations using the implication. In order to introduce and study compositional products and implications, we introduce and study a function space of multi-valued continuous functions. This space turns out to be particularly well-behaved for effectively traceable spaces that are closely related to admissibly represented spaces.
منابع مشابه
Joins in the strong Weihrauch degrees
The Weihrauch degrees and strong Weihrauch degrees are partially ordered structures representing degrees of unsolvability of various mathematical problems. Their study has been widely applied in computable analysis, complexity theory, and more recently, also in computable combinatorics. We answer an open question about the algebraic structure of the strong Weihrauch degrees, by exhibiting a joi...
متن کاملAN ALGEBRAIC STRUCTURE FOR INTUITIONISTIC FUZZY LOGIC
In this paper we extend the notion of degrees of membership and non-membership of intuitionistic fuzzy sets to lattices and introduce a residuated lattice with appropriate operations to serve as semantics of intuitionistic fuzzy logic. It would be a step forward to find an algebraic counterpart for intuitionistic fuzzy logic. We give the main properties of the operations defined and prove som...
متن کاملThe degree structure of Weihrauch-reducibility
We answer a question [2] by Vasco Brattka and Guido Gherardi by proving that the Weihrauch lattice is not a Brouwer algebra. The computable Weihrauch lattice is also not a Heyting algebra, but the continuous Weihrauch lattice is. We further investigate embeddings of the Medvedev degrees into the Weihrauch degrees.
متن کاملWeihrauch Degrees, Omniscience Principles and Weak Computability
In this paper we study a reducibility that has been introduced by Klaus Weihrauch or, more precisely, a natural extension of this reducibility for multi-valued functions on represented spaces. We call the corresponding equivalence classes Weihrauch degrees and we show that the corresponding partial order induces a lower semi-lattice with the disjoint union of multi-valued functions as greatest ...
متن کاملRough ideals based on ideal determined varieties
The paper is devoted to concern a relationship between rough set theory and universal algebra. Notions of lower and upper rough approximations on an algebraic structure induced by an ideal are introduced and some of their properties are studied. Also, notions of rough subalgebras and rough ideals with respect to an ideal of an algebraic structure, which is an extended notion of subalgebras and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1604.08348 شماره
صفحات -
تاریخ انتشار 2016